Auxin Control of Root Organogenesis from Callus in Tissue Culture

نویسندگان

  • Jie Yu
  • Wu Liu
  • Jie Liu
  • Peng Qin
  • Lin Xu
چکیده

During post-embryonic development, roots can be initiated by a programmed developmental order or by environmental and wound stimulation (Bellini et al., 2014; Xu and Huang, 2014; Birnbaum, 2016; Ikeuchi et al., 2016; Kareem et al., 2016; Lup et al., 2016; Rellan-Alvarez et al., 2016; Steffens and Rasmussen, 2016). De novo root regeneration (DNRR) is a type of plant regeneration to produce adventitious roots upon wounding or stress (Liu et al., 2014; Xu and Huang, 2014). For example, using leaf explants of Arabidopsis (Arabidopsis thaliana), adventitious roots could usually be regenerated by two ways: adventitious roots could be formed directly from detached leaf explants when cultured on B5 medium without added hormones (Chen et al., 2014; Liu et al., 2014), hereafter called direct DNRR (Figure 1A); or adventitious roots could be formed from callus in tissue culture, hereafter called indirect DNRR. In indirect DNRR, leaf explants are first cultured on callus-inducing medium (CIM) with high auxin levels to induce callus formation, and then the callus is transferred to root-inducing medium (RIM) with low auxin levels or even on B5 medium without auxin supplement to allow root formation (Figure 1B). Many plants such as Arabidopsis and rice (Oryza sativa) can form adventitious roots from callus (Figures 1C,D). While the cell fate transition during direct DNRR from Arabidopsis leaf explants has been carefully studied in Arabidopsis (Liu et al., 2014; Chen et al., 2016b,c; Hu and Xu, 2016; Sheng et al., 2017), in indirect DNRR the cell fate transition is still not clear. How roots are formed from callus remains unanswered. In this paper, we present our analyses of the cell lineage of indirect DNRR and discuss the similarities and differences between direct and indirect DNRR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Getting to the root of regeneration: adventitious rooting and callus formation.

The capacity of plants to regenerate is impressive. Plant cells can undergo somatic embryogenesis in culture, forming an embryo from a single cell or a group of somatic cells. In addition, plants exhibit de novo organogenesis, in which new organs and even entire plants are produced from other organs upon wounding. Almost as remarkable as the phenomenon of plant regeneration is how little we kno...

متن کامل

Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerni...

متن کامل

Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin?

Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus...

متن کامل

Callus formation, regeneration and volatile constituents production in Teucrium chamaedrys tissue culture

Teucrium chamaedrys is regarded as an herbaceous perennial plant from Lamiaceae family that is used as medicinal plants and food from ancient times. Due to the recent developments in tissue culture techniques and extraction of secondary metabolites, this study aimed to investigate the explants of the Teucrium for callus induction and secondary metabolites. The interaction of Auxin hormones incl...

متن کامل

In vitro Propagation of a Cut Flower Variety Muscari armeniacum Leichtl. ex Bak. Through Direct Bulblet Proliferation Pathways

Muscari armeniacum is one of the important ornamental cut flower in floriculture industry which native to Southern Europe, North Africa, Western Asia and Asia Minor. In this study, bulb explants (basal plate of bulb having meristem), bulb scales and leaf segments from in vitro derived bulblets were culture in Murashige and Skoog (MS) medium with different plant growth regulato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017